Reteaching

3.6 Using Formulas and Literal Equations

◆ Skill A Rewriting a formula or a literal equation

Recall A literal equation is an equation that contains different variables. Sometimes a formula is called a literal equation when the variables represent specific quantities.

◆ Example 1
Given the formula \(A = P + I \), write a formula for the principal, \(P \), based on the interest, \(I \), and amount, \(A \).

◆ Solution
\[
A = P + I \quad \text{Given} \\
A - I = P + I - I \\
A - I = P \\
P = A - I
\]

◆ Example 2
Solve the equation \(6x + 2y = 8 \) for \(y \).

◆ Solution
\[
6x + 2y = 8 \quad \text{Given} \\
6x + 2y - 6x = 8 - 6x \\
2y = 8 - 6x \\
\frac{2y}{2} = \frac{8 - 6x}{2} \\
y = 4 - 3x \quad \text{Simplify.}
\]

Solve each equation for the indicated variable.

1. \(x - y = 10 \), for \(x \)
2. \(x + y = z \), for \(y \)
3. \(x - z = -y \), for \(z \)
4. \(a + x = 2y \), for \(x \)
5. \(x + y - z = 32 \), for \(y \)
6. \(d = rt \), for \(t \)
7. \(A = \frac{1}{2}bh \), for \(h \)
8. \(3x + 5y = 15 \), for \(x \)
9. \(12x - 6y = 18 \), for \(y \)
10. \(p = 2(l + w) \), for \(l \)
Solve each problem.

11. Use the formula for perimeter, \(p = 2l + 2w \). Find \(w \) when \(p = 30 \) and \(l = 12 \).

12. Use the formula for circumference of a circle, \(C = 2\pi r \). Find \(r \) when \(C = 14\pi \).

13. The formula for the area of a triangle is \(A = \frac{1}{2}bh \). If the area of a triangle is 75 square meters and the base has a length of 15 meters, find the height.

14. The formula for distance is \(d = rt \), where \(d \) is distance, \(r \) is rate, and \(t \) is time. If you travel at 80 kilometers per hour, find the amount of time that it will take to travel 320 kilometers.

15. The formula for profit is \(P = R - C \), where \(P \) is profit, \(R \) is revenue, and \(C \) is cost. If a company makes $15,000 in revenue and $8000 in profit, find the cost.

16. The formula \(P_1V_1 = P_2V_2 \) is called Boyle's Law. \(P_1 \) and \(P_2 \) represent the pressure applied to a gas at two different times, and \(V_1 \) and \(V_2 \) represent the volume of the gas at those times. If the volume of the gas is 4 liters when the pressure is 8kPa, find the pressure when the volume is 2 liters. (kPa is the unit that measures pressure.)
Lesson 3.5

1. $x = -6$
2. $t = 5$
3. $z = 3$
4. $k = -13.5$
5. $x = 4$
6. $m = 2$
7. $h = 3$
8. $n = -3$
9. $t = 3$
10. $c = -5$
11. $f = -1$
12. $y = 7$
13. $3(x - 1.50) = 35.97; \text{ the original cost is } $13.49.$
14. $12x = 2(x + 6); x = 1.2$
15. $4(x - 2) = 20; \text{ the original average cost was } $7.$
16. $29 + 0.15x = 20 + 0.25x; \text{ the rates are equal when you drive 90 miles in one day.}$

Lesson 3.6

1. $x = y + 10$
2. $y = z - x$
3. $z = x + y$
4. $x = 2y - a$
5. $y = 32 - x + z$
6. $t = \frac{d}{r}$
7. $h = \frac{2A}{b}$
8. $x = 3y + 5$
9. $y = 2x - 3$
10. $l = \frac{p}{2} - w$
11. $w = 3$
12. $r = 7$
13. 10 meters
14. 4 hours
15. 7000
16. 16 kPa

Reteaching—Chapter 4

Lesson 4.1

1. $\frac{2}{5}$
2. $\frac{5}{1}$
3. $\frac{9}{8}$
4. $\frac{3}{2}$
5. $\frac{6}{17}$